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THREE-DIMENSIONAL ELECTROMAGNETIC SCATTERING 
FROM ARBITRARY INHOMOGENEOUS OBJECTS 

Introduction 

The purpose of this paper is to describe the work we have done towards de- 
veloping a versatile and efficient method for calculating electromagnetic energy 
deposition in arbitrary three-dimensional inhomogeneous objects. 

Given an incident field Emp generated from, for example, an antenna, the 
problem is to estimate the amount of electromagnetic energy deposition in a 
nearby human object. While this is a classical problem, a versatile and efficient 
method for solving it in realistic settings is not generally available [10]. Some 
recent research in this area can be found in [24, 25, 26] and their references. 
Understanding the details of electromagnetic deposition in humans is essential 
for health and safety exposure considerations. Knowledge of deposition in 
humans and non-human animals is very important to medical research on the 
bioeffects of radiation exposure. 

Derivation of Model Equations 

The stated problem involves solving the symmetric Maxwell's equations: 

VxE   =   -f -3S- 

VxH   =   ^ + J'™e 

at 
V D   =   ptrue 

V B   =   pfjf 

for the electric and magnetic field intensities E and H, and the electric and 
magnetic flux densities D and B everywhere in R3 including the object. We 
assume the body (scatterer) occupies a bounded region V in free space. Here 
the electric sources p*rue and Jtrue are respectively the charge and current 
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densities. For the sake of symmetry, the fictitious and identically vanishing 
magnetic sources p^f* and j£rf are introduced. All dependent ("tilded") vari- 
ables are assumed to be functions of space and time. 

We assume the object is linear, isotropic and nondispersive. Then 

D   =   eE 

B   =   pH 
jtrue     =     ^ 

where e, p, and <r, all possibly spatially-dependent, are respectively the permit- 
tivity, the permeability, and the conductivity of the body. Outside the body, 
the first two of these equations hold with the constant free-space parameters 
£o and po respectively. 

If we let p(r) = p0 + 6p(r) and e(r) = e0 + Se(r), where r = (x, y, z), then 
the Maxwell's equations can be written as 

where 

V x E 
<9H 

7x H 
dE     - 

V-E =    P/So 

V  H =     Pm/ßo 

«m    = 
6^ + 3L 

J     = fe^F + Jtrue 

ut 

P    = 
ptrue _ V . gej 

Pm    =    p^-V-SpB. 

If we further assume the sources vary sinusoidally with time, then the 
problem reduces to solving the time-harmonic equations: 

VxE   =   -jßup0H-Jm (1) 

VxH   =   jßuue0E + 3 (2) 

V-E   =   p/e0 (3) 

V  H   =   pm/p0 (4) 



subject to appropriate boundary conditions on the E and H fields. Here the 
phasor E is related to E by the equation 

E(x,y,z,t) = M[E(x,y,z)eJß0Jt} 

where ß = ±1.   Similarly, the same can be said for the other dependent 
variables. Clearly, we must have 

Jm = jßuSfjiH + 3^ (5) 

J = jßuSeE + Jtrue (6) 

p = ptrue-V-6eE (7) 

Pm = p^-V-SpH (8) 

If the electric and magnetic intensities E and H satisfy the time harmonic 
equations, Equations (l)-(4), then 

VJ   =   -jßup (9) 

V-Jm    =     -jßupm (10) 

Or, equivalently, in terms of the original variables, 

V-J(t   =   -jßupfj? (12) 

These are the equations of continuity. Conversely, if E and H satisfy 
Equations (1) and (2), then Equations (3) and (4) are automatically satisfied, 
provided the equation of continuity for the electric sources 3true and ptrue holds. 
Since we will always assume this to be true, it suffices to solve only Equations 
(1) and (2). 

Taking the "curl" of Equation (1) and then substituting Equation (2) in 
the result, we obtain the equation 

V x V x E - u2e0p,0E   =   -jßupoJ - V x Jm (13) 

The formulation up to this point has been quite general. However, we 
will now make the simplifying assumptions that p, = p,0 everywhere inside the 



body. It follows that Jm = 0 and pm = 0 everywhere, as J^ct and p^ vanish 
identically in reality. Thus, Equation (13) simplifies to 

VxVxE-^E   =   -jßtüßoJ (14) 

where 
; 2 2 k0=w e0ßo 

If we let G(r, r') denote the free-space Dyadic Green's Function, so that 

G(r,r') = (I + -^VV)9(r,r') 

where 
e-jßk0\T-V>\ 

g^X') = A.\r-T>\ 

is the Green's function for the three-dimensional scalar Helmholtz equation, 
then, treating the right-hand-side of Equation (14) as a source (even though it 
contains the unknown field E through the definition of J), it can be shown that 
the electric field E formally satisfies the following Fredholm integral equation 
(of the second kind): 

E(r)   =   -jßufjiof       G(r,r')-J(r')dr' 
JVUVf 

=   -jßuixol       G(ry)-[jßu,6e(r')E(T') + Jtrue(r')}dr' 
Jyuvf 

=   -jßujßo f G(v, r') • [jßuöeiv') E(r') + J^r') ] dv' 
J V 

-jßußof   G(r,r') • Jtrue(r') dv' 
Jv* 

where Vj denotes that region in space outside the body V where the "source" 
J does not vanish. Here, we have used the fact that 8e = 0 in Vc, the region 
external to V. Since we are assuming the body medium is linear, so that 
J*™e(r) = o-(r) E(r), it follows that 

E (r)   =   u2
ßof G(r,r')- [r(r') E(r') ] dv' 

J v 

-jßüjßo[  G(v,v')-3true(v')dv' (15) 
Jv? 



where 

r(r) = oe(r) — 
UJ 

Since the electric field E is identical to the incident field Emc when there is no 
scatterer (6e = 0 and a = 0), the last integral in Equation (15) must be the 
incident field: 

Einc(r) = -jßufio I c G(r, r') ■ Jtrue(r') dr' 

Thus, the model (integral) equation we need to solve is: 

E(r) +ß0 f G(r, r') • [r(r') E(r') ] dr' = Einc(r) (16) 

where 
ß0 = -oßßo 

Singularity of the Dyadic Green's Function 
At each field point r inside the region V, the model equation, Equation 

(16), becomes singular, since G(r,r') is undefined when the source point r' 
coincides with the field point r. 

The singularity of the Dyadic Green's Function has been well-studied ([17], [18], 
[15], [20]). The singular integral in Equation (16) can be handled "as usual" 
as follows. 

Jv G(r, r') • [r(r') E(r') ] dv'   =   ( um   (/^ Ö(r, r') • [r(r') E(r') ] dr' + 

f G(v,T')-[r(v')E(r')}dr') (17) 
J V3 

where Vs are ever-shrinking volumes surrounding the field point r. However, 
what is unusual about this approach is the fact that the limiting process is not 
uniform. In particular, the limiting values of the two integrals on the right 
will generally be different, depending on the shapes of Vs. Nevertheless, the 
sum of the two will always be the same. 

If the Vs are chosen to be spheres, then it can be shown ([17], [15],[20], [7]) 
that 

,Um   /^(r.rO.WrOEMl*'   =   -I^« (18) 



Thus, Equation (16) becomes 

a0(r)E(r) +&Upv(r) = E*"c(r) (19) 

where 

a°(r)   =   1 + "^ (20) 

and 

Upv(r)   =   Pv/G(r,r'Hr(r')E(r')Mr' (21) 

Here PV stands for principal value integration (using shrinking spheres). This 
formulation has been employed by Livesay and Chen [12] and many other 
researchers ([5], [18], [4]). 

The principal value integration in Equation (19) generally cannot be eval- 
uated, analytically or numerically. An equivalent but more practical approach 
is to re-formulate the singular integral in Equation (17). Defining 

F(r)=r(r)E(r), 

and using a representation of E(r) that involves vector and scalar potentials, 
one can replace this singular integral by 

Ufn(r) = (I + 1VV) • Jv g(v, r') F(r') dv' 

Moreover, Ufn(r) can be expressed, without principal value integration, as 
([8, 11, 19, 20]) 

Ufa(r) = I1(r) + I2(r) + I3(r) (22) 

where 

Ix(r)   =    /       G(r,r')-F(r')dr' 

I2(r)   =    /   G(r,r')-F(r')-G0(r,r')-F(r)dr' 

l3(r) = MJsT 4^17^7^ -F(r)^ 



Here, the region Vr is any finite (not necessarily infinitesimal) region enclosing 
r and is contained in V. ST is the surface area of Vr- The outward normal of 
ST at a point r' on ST is denoted by fi(r'). Finally, G0 is the so-called static 
Dyadic Green's Function defined by 

G0(r,rO = ^VV<?0(r,r') 

where 

9o(r, r') 4-7T | r — r' | 

In their derivation of the representation above, Fikioris [8], Lee [11], and Wang 
([19], [20]) require F to satisfy a Holder condition. F satisfies a Holder condi- 
tion at a point r if there are three positive constants A, B, and C such that 

|F(r)-F(r') |< A\r-r'\B 

for all r' satisfying | r — r' | < C 
It is interesting to note that 

PV^ G0(r,r')-F(r)rfr'   ±   Ijf   n(r')V'go(r,r')c/5'• F(r) 

[r   ii(r') (r - r') Jot 

kl JsT 47T I r — r' 

=   I3W 

ki JST A-K   r - r' 3 

This can be verified, for example, by assuming Vr is a sphere centered at r. 
For in this case, 

PV/   Go(r,r')-F(r)rfr' = 0 

but 

Consequently, 

Ufa(r)   ^    [       G(T, r') • F(r') dr' + PV /   G(r, r') • F(r')dr' 

=   PV f G(r,r')-F(r')dr' 
J y 



This implies that the relationship 

(I + -^VV)-|^(r,r')F(r') dv' = PV_£(I + pVV) • g{r,r') F(r') dr' (23) 

is at best formal. The left side of Equation (23) is the correct term to use, 
though it is numerically undesirable. Its equivalent three-term form in Equa- 
tion (22), while more complicated, is numerically better behaved. Finally, the 
right side of Equation (23) is incompletely defined, requiring additional qual- 
ifications (principal volume being used and its associated correction term) for 
its correctness. 

One can also show in the special case in which Vr is a sphere that I2 will 
approach zero as the radius of the sphere approaches zero, so that a result 
implicit in Equation (19) is recovered: 

(I + 1VV) • Jv g(v, r') F(r') dv' = PV Jy G(r, r') • F(r') dv' - ^F(r)  (24) 

Or, equivalently, 

Ufn(r) = Upv(r) - JLF(r) 

In short, using the representation of the singular integral given in Equation 
(22), we obtain an alternate representation of the model equation given in (19) 
but which does not require making a principal volume integration: 

E(r)+/?0Ufn(r) = Ei"c(r) (25) 

This has exactly the same form as Equation (16) except the integral is now 
unambiguously defined. 

Solution Method 

To solve the integral equation (19) or its alternate form in equation (25), 
we use the classical Moment Method (MM) [9]. In this report, we will concen- 
trate on solving equation (19). Because we do not assume the scatterer to be 
homogeneous, E(r) is generally not divergence-free. (See Equations (3) and 
(7).  )  As we will see in the next section, it is consistent with our approach 
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if the field being sought is divergence-free. Thus, instead of applying MM to 
equation (19), we will apply it to the following equivalent integral equation: 

c*i(r)E(r) + ß0 PV / G(r, r') • [r^r') E(r')] dv'   =   Wnc{r)        (26) 
iv 

where 

ai(r)   =   a0(r)ai(r) 

aMr)   =    — 
e0 + r(r) 

Ti(r)   =   &I(T)T(T) 

E(r)   =   E(r)/d!(r) 

Clearly, äi(r)E(r) = E(r) and 7i(r)E(r) = r(r)E(r) = F(r).  More impor- 
tantly, it can readily be verified that E is now divergence-free (V • E = 0.) 

In MM, the unknown field E is assumed to be expandable in a family of 
basis functions {fn}: 

E(r) = f>nf„(r) (27) 
n=l 

where {an}„=1 are complex constants to be determined. When Equation (27) 
is substituted into Equation (26), we readily obtain 

f>n{ai(r)fn(r)+/?0Un(r)}   -   Einc(r) (28) 
n=l 

where 

UB(r)   =   PV / G(r, r') • [n(r') fn(r')] dx' (29) 
J V 

Starting with Equation (28), there are two common methods to determine 
the N complex constants {an}^=1. One can evaluate Equation (28) at N 
distinct points, r = r^i = 1,...,N, to obtain a system of N linear equations 
in N unknowns. This is the so-called point-matching method. Alternately, 
we can integrate Equation (28) with each of the N basis functions in in turn 
to get again a system of N linear equations in N unknowns. This is the so- 
called Galerkin's Method. This is the method we have used in this study. The 
optimality of the Galerkin's Method has recently been discussed in [21]. 



Two issues remains to be addressed to complete the description of the 
solution method. One is the choice of basis functions {fn} and the other is a 
method to evaluate the integral defining U„(r) in Equation (29). 

Edge-based vector basis functions 

All numerical solutions are approximations of the exact solutions. Thus, 
even though exact solutions to Equations (1, 2) will automatically satisfy 
Equations (3, 4) in light of the Equations of Continuity, Equations (11,12), 
numerical solutions to Equations (1, 2) may be far from satisfying Equation 
(11). 

The requirement that Equation (3) be satisfied can readily be shown to be 
equivalent to the condition V • E = 0. Since 

N 

E(r) = ^anfn(r), 
n=l 

this condition is automatically satisfied if V • fn = 0 for each f„. In finite 
element methods, a well-known class of functions with this property is the 
class of Whitney functions of degree 1 ([23], [3]). We adopt this family for 
our use here. For sake of completeness, we will define this family and mention 
some of its properties relevant to our numerical procedure. 

In the numerical solution of Equation (19), we approximate the region V 
occupied by the body by a family of Nt disjoint tetrahedra {Tj}^. Since there 
are six edges to a tetrahedron, there will be a large number, say Ne, of edges 
in the entire system. (There is generally no formula that relates Nt to Ne. 
Two tetrahedra can have 12, 11, or 9 edges depending on whether they have 
no, 1 or three edges in common. In our discretization, we do not allow two 
tetrahedra to have touching faces without them being the same.) Similarly, 
since there are four vertices (nodes) to a tetrahedron, there will also be a large 
number, say Nn, of nodes in the system. 

To each edge in the system is associated a unique Whitney function. If 
e = (vx,v2) denotes an edge in the system joining the node vi to the node 
v2, then the vector-valued Whitney function We associated to the edge e = 
(vi, v2) is defined by 

W.(r) = AVl(r)VAV2(r) - AV2(r)VAVl(r) 
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where AVi(r) is the barycentric function associated to the node v,, (i = 1,2), 
and is the "simplest" piecewise linear function such that AVi(vj) = 6\,j = 
1,..., Nn. In particular, if v,, (i = 1,..., 4) represent the four vertices of a 
tetrahedron T, then AVi has the following simple representation in T: 

A*(r)   = --1 r 
1 

def bj • r + of (30) 

where 

and 

vi   v2   v3   v4 

1111 

^ = {61,61,61,61} 

Furthermore, if e = (vi, v2) in an edge of T, a representation of We in T is of 
the form (using notations in Equation (30)): 

Wl(r) = a?;2 + b^ x r (31) 

where 

and 

,TUT T-uT 
al,2 = al b2  - a2 bl 

With some algebraic manipulations, one can also show that 

v3 x v4 
al,2    — 

T      _ K 

det(X) 
V4-V3 

det(X) 

where det(X) = (v2 - Vi) • [(v3 - vx) x (v4 - vi)] is the determinant of X. 
Hence, the Whitney function associated with the edge e = (vi, v2) has a rather 
simple representation in the tetrahedron T whose vertices are Vi,v2,V3, and 
v4: 

W?(r) 
1 

(v3 x v4 + (v4 - v3) x r) 
det(X) 
(v3 - r) x (v4 - r) 

det(X) 

11 
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It should be noted that while a^2,b^2 and therefore Wj depend on all four 
vertices vx,..., v4 of T, they are invariant, as they should, under the ordering 
of V3 and V4. 

The following properties of We are especially relevant to our numerical 
method. Firstly, the We is divergence-free, i.e., V-Wf = 0 for any reT. This 
follows directly from Equation (31). 

Secondly, it can be shown algebraically that the tangential component of 
Wj on each of the two faces of T containing the edge e is dependent only 
on the vertices making up that face, and, on the other two faces, the tangent 
component of Wj is identically zero. Since We vanishes identically on any 
tetrahedron not containing the edge e, the tangential component of We is 
continuous across all faces of the tetrahedron. 

Evaluation of Un 

To evaluate the integral in Equation (29), we re-write it as follows: 

U„(r)   =   PVjfpG(r,r').[r1(r
/)ft,(0]dr' 

=   I?(r) + I5(r) 

where 

I?(r)   =    / G(T,r,)-rl(T')W)dT' 
JV—Vr(r) 

Ig(r)   =   PV/      G(r,r,)-T1(r')&(r/)dr' 
JVr(r) 'Vr(r) 

Here VT(T) is the unique tetrahedron containing r in its interior. (In the 
Galerkin's Method, Un(r) is eventually multiplied (dot-producted) with the 
basis functions (Whitney's functions) and integrated numerically over tetrahe- 
dra. The second-order numerical integration method employed only requires 
the evaluation of the dot-product at interior points of tetrahedra.) 

The integral in I2 is generally difficult to evaluate over tetrahedra. For this 
reason, we make the simplifying assumption that 

Ig(r)   «   PV/ G(r,r/)-T1(T,)fn(T')dT' 
JB(r,req) 
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where B(r, req) is a sphere centered at r with radius req given by 

i 

3 
r.   =   (¥»^WIl): 

With this radius, the volume of the sphere is exactly the same as the volume 
of Vr(r), denoted here by \\VT(r)\\. Thus 

U„(r)«I?(r) + Pv/ G(rlO-n(r')^(r')rfr' (34) 

In many problems, we can reasonably assume the region V is piecewise 
inhomogeneous. In these cases, we can clearly ensure each tetrahedron is 
within a region of constant T\. Since the basis functions fn(r') in this study 
are of the form an + bn x r', the second integral in Equation (34) can be 
evaluated explicitly: 

PV/ G(r,r').T1(0^(r')dr/ 

JB(r,req) 

=   n(r) PV / G(r, r') • (a« + bn x r') dv' 
JB(r,req) 

2T(r„)ri(r) , 
= 3fc2 U;(an + bnxr) 

where 

T(req)   =   (l+jßkoreq)e-i
ßk0r'*-l 
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Results 

To test our approach, we calculated the E field in a homogeneous sphere 
irradiated by a plane wave and compared the result with the analytic solution 
(Mie). We did this for several different sets of parameter values and discretiza- 
tions. 

Test Group I. 

Our first sets of parameters are those reported in [15]. In particular, we 
studied two different problems: one is for a transparent sphere in which the 
conductivity a is zero and the relative dielectric constant e(r)/e0 is identically 
one, and the other is for a translucent sphere in which a = 0.015625 mhos 
per meter and the relative dielectric constant e(r)/e0 is identically 1.015625. 
In both cases we assume the incident field is a plane wave propagating along 
the z-axis and polarized in the x-direction. The frequency is taken to be 1000 
megahertz and the amplitude is 1 volt per meter. To keep the problem small, 
we assume the sphere has a 5 cm. radius. 

For the assumed frequency, the free space wavelength is approximately 
0.3 (m). If we use the commonly quoted rule of thumb of 20 points per 
wavelength, the mesh size is approximately 0.015 (m) in each of the three 
directions. A tetrahedron with three sides parallel to the three rectangular 
coordinate axes and each with length of 0.015 (m) has a volume of 5.625 x 10-7 

(m3), requiring approximately 930 tetrahedra to fill out the given sphere. If we 
use 10 points per wavelength instead, then the volume of a typical tetrahedron 
is 4.5 x 10-6 (m3), requiring approximately 116 tetrahedra to fill out the sphere. 
To keep our test problem small, we have discretized the sphere using a smaller 
number of tetrahedra, which in essence amounts to using a smaller number (10 
approximately) of points per wavelength. We have designed and implemented 
two different discretization methods (Dl and D2) for the sphere. Method Dl 
was used for the transparent case and D2 was used for the translucent case. 
The major characterisitics of the grids resulting from these discretizations are 
summarized in Table 1. 

The discretizations we have chosen for simplicity are relatively coarse, as 
one can see from the following volume calculation. The volume of our 5 cm- 
radius sphere is 5.23 x 10-4 (m3), but the total volume occupied by all the 
tetrahedra in either the transparent or the translucent case is approximately 
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4.0 x 10~4 (m3), which is only 75% of the actual volume. For comparison, the 
fourth column ("Preferred") in Table 1 shows an example of a discretization 
using method D2 in which 97.59% of the volume of the sphere was achieved 
by all the tetrahedra. 

Figures 1-9 show graphically the results of these discretizations. As one 
may see from the plots of the shrunken tetrahedra, the main difference between 
discretizations Dl and D2 is that the tetrahedra in D2, especially those near 
the boundary, are more regular (not as flat) than those in Dl. Incidentally, the 
volumes of the tetrahedra in the translucent case have a narrower distribution 
than that in the transparent case. However, this is not due to the difference 
in the two methods, but rather to the choice of parameters used to generate 
these tetrahedra. 

The "Preferred" case (Figures 7-9) shows in particular that the discretiza- 
tion method D2 will, in the limit, reproduce the sphere. 

Figures 10-11 show the magnitude of the x-component of the total field 
inside the sphere along the z-axis. They agree quite well with the theoretical 
results, despite the somewhat coarse discretizations. 

Test Group II. 

To test the convergence of our method, we refined the discretization for the 
translucent case further. Figure 12 shows the result of using 288 tetrahedra. 
This result was unexpected, as it is clearly not as good as that of using 120 
tetrahedra (Figure 11). We also tried using 400 tetrahedra, the result (not 
shown) did not get better. We suspect this non-convergence may have to do 
with our handling of the singularity of the dyadic Green's function. 

We also tested the sensitivity of our method to parameters of the model. 
Figure 13 shows the result of using a relative dielectric constant of 2.015625 
(one unit more than what was used to produce Figure 11.) While this result 
is apparently not as good as that shown in Figure 11, it is not unreasonable, 
considering the gross discretization and the increased discontinuity of dielectric 
constant (between free space and the scatterer.) 

Finally, we tested one case in which the frequency was increased from 1 
GHz to 10 GHz. The result is shown in Figure 14. Here, the model has consis- 
tently under-estimated the actual value, though we can see a mild convergence 
towards the real solution as the discretization is refined. 
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Discussion 

Our preliminary tests clearly indicate that we should next address the 
convergence problem. This is likely to involve better handling of the singularity 
of the dyadic Green's function, as this is the principal approximation used in 
this method. 

TABLE 1. RUN PARAMETERS 
Parameters Transparent Translucent Preferred Grid 

Discretization 
Method 

Dl D2 D2 

Sphere Radius 
(m) 

0.05 (m) 0.05 (m) 0.05 (m) 

No. Tetrahedra 100 120 3648 
No. Edges 323 400 11,400 
No. Nodes 98 103 3,127 
Total Volume 
(m3) 

4.00 x 10-4 4.08 x 10~4 5.11 x 10-4 

Ave Tetra. Vol 
(m3) 

4.0 x 10-0 3.4 x 10~ö 1.4 x 10~7 

Min. Tetra Vol 
(m3) 

1.5 x 10"e 1.9 x 10"6 7.4 x 10-8 

Max. Tetra Vol 
(m3) 

9.0 x 10-e 6.7 x 10~ö 4.0 x 10-7 

Conductivity, 
a (mhos/m) 

0.0 0.015625 

Rel. Dielect, 
( e/e0 ) 

1.0 1.015625 

Frequency 
(MHz) 

1,000 1,000 

Incident Field 
Ex(volt/m) 
Ey (volt/m) 
Ez(volt/m) 

1.0 
0.0 
0.0 

1.0 
0.0 
0.0 
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Conclusion 

In this report we describe the progress we have made towards developing 
a 3D EM interior scattering model to predict energy deposition in realistic 
biological media. The volume integral approach taken is a natural and math- 
ematically sound method to solve this problem. While we have made much 
progress, there are obviously several areas that required further analysis. These 
include 

1. Refine singular integral calculations. 

2. Upgrade our current method or develop new volume integral equation 
method to solve our problem. 

3. Conduct numerical analysis on the method. 

4. Continue validating the model with known solutions and experimental 
data. 

Associated with these analyses is the important question of computational 
efficiency. Clearly, it is paramount that our model be accurate. However, for 
a model to become a useful tool, one must be able to apply it to realistic 
situations. In our case, this means using the model on scatterers of reasonable 
size (not just small isolated organs). Therefore, in the future, we need to 
conduct the following closely-related mathematics/computer sciences research: 

1. Develop methods to handle larger systems. 

2. Explore efficient ways to model pulses. 

3. Explore the possibility of using parallel computing to speed up the cal- 
culations. 

Finally, much research has been and is continued to be done to solve exte- 
rior scattering problems due to its obvious military significance. The interior 
scattering problem that we are interested in, on the other hand, has received 
relatively little attention. Our emphasis here is to develop a model of interior 
scattering based on rigorous mathematics to address realistic biological prob- 
lems (3-dimensional inhomogeneous scatterers). We believe we are heading in 
the right direction. 
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Figure 1. Discretization (D1) of a Sphere 
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Figure 2. Discretization (D1) of a Sphere (Shrunk) 
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Figure 3. Tetrahedron Volume Distribution (D1) 
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Figure 4. Discretization (D2) of a Sphere 
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Figure 6. Tetrahedron Volume Distribution (D2) 
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Figure 7. Preferred Discretization of a Sphere 
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Figure 8. Preferred Discretization of a Sphere (Shrunk) 
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Figure 9. Tetrahedron Volume Distribution (Preferred) 
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Figure 10. Transparent Case 
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Figure  13. Sensitivity / er 
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